Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Mol Biol Rep ; 51(1): 625, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717527

RESUMEN

BACKGROUND: The currently known homing pigeon is a result of a sharp one-sided selection for flight characteristics focused on speed, endurance, and spatial orientation. This has led to extremely well-adapted athletic phenotypes in racing birds. METHODS: Here, we identify genes and pathways contributing to exercise adaptation in sport pigeons by applying next-generation transcriptome sequencing of m.pectoralis muscle samples, collected before and after a 300 km competition flight. RESULTS: The analysis of differentially expressed genes pictured the central role of pathways involved in fuel selection and muscle maintenance during flight, with a set of genes, in which variations may therefore be exploited for genetic improvement of the racing pigeon population towards specific categories of competition flights. CONCLUSIONS: The presented results are a background to understanding the genetic processes in the muscles of birds during flight and also are the starting point of further selection of genetic markers associated with racing performance in carrier pigeons.


Asunto(s)
Columbidae , Vuelo Animal , Transcriptoma , Animales , Columbidae/genética , Columbidae/fisiología , Vuelo Animal/fisiología , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Músculos Pectorales/metabolismo , Músculos Pectorales/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología
2.
J Phys Chem B ; 128(16): 3844-3855, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38568745

RESUMEN

Cryptochrome is currently the major contender of a protein to underpin magnetoreception, the ability to sense the Earth's magnetic field. Among various types of cryptochromes, cryptochrome 4 has been identified as the likely magnetoreceptor in migratory birds. All-atom molecular dynamics (MD) studies have offered first insights into the structural dynamics of cryptochrome but are limited to a short time scale due to large computational demands. Here, we employ coarse-grained MD simulations to investigate the emergence of long-lived states and conformational changes in pigeon cryptochrome 4. Our coarse-grained simulations complete the picture by permitting observation on a significantly longer time scale. We observe conformational transitions in the phosphate-binding loop of pigeon cryptochrome 4 upon activation and identify prominent motions in residues 440-460, suggesting a possible role as a signaling state of the protein or as a gated interaction site for forming protein complexes that might facilitate downstream processes. The findings highlight the importance of considering longer time scales in studying cryptochrome dynamics and magnetoreception. Coarse-grained MD simulations offer a valuable tool to unravel the complex behavior of cryptochrome proteins and shed new light on the mechanisms underlying their role in magnetoreception. Further exploration of these conformational changes and their functional implications may contribute to a deeper understanding of the molecular mechanisms of magnetoreception in birds.


Asunto(s)
Columbidae , Criptocromos , Oxidación-Reducción , Animales , Columbidae/genética , Columbidae/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Simulación de Dinámica Molecular , Conformación Proteica
3.
Poult Sci ; 103(3): 103422, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228063

RESUMEN

The egg-laying interval (LI) directly reflects the laying performance of breeding pigeons, influenced by reproductive hormones. This study aimed to assess reproductive hormone levels in serum and the expression of related genes and their receptors in the hypothalamus and pituitary gland in 4 stages: first (LI1), third (LI3), fifth (LI5), and seventh (LI7) days. The results showed that serum gonadotropin-releasing hormone (GnRH) level decreased from LI1 to LI7 (P < 0.01) and peaked in LI1. The serum follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels stayed at high levels from LI1 to LI5. The FSH level decreased slightly from LI5 to LI7 (P > 0.05), but the LH level decreased rapidly (P < 0.01). The prolactin (PRL) levels significantly increased in LI5 (P < 0.01) compared with LI1 and then stayed at a high level. The GnRH1 expression in the hypothalamus had no significant change in LI (P > 0.05). However, the GnRHR first decreased from LI1 to LI3 (P < 0.05) and then increased. The FSH mRNA level in the pituitary gland decreased from LI1 to LI3 and slightly increased in LI5 (P > 0.05). The change pattern of FSHR was similar to that of FSH and peaked in LI5 (P < 0.05). The LH expression level was the highest in LI5 and significantly higher than that in LI3 and LI7 (P < 0.05). However, the LHR mRNA level decreased in LI (P < 0.05). The expression patterns of PRL and PRLR were similar; they were upregulated in LI and peaked in LI7 (P < 0.01). The expression pattern of GnRHR was similar to that of FSH, LH, and FSHR, suggesting the critical role of GnRHR in LI. Furthermore, the expression levels of these genes peaked in LI5, closely correlating with the maturation of the first largest follicle in pigeons. PRL-PRLR signaling inhibited GnRH activity to promote ovulation. This study provided a basis for further investigating the molecular mechanisms underlying the regulation of reproduction in pigeons.


Asunto(s)
Pollos , Columbidae , Animales , Femenino , Columbidae/genética , Hipotálamo , Hipófisis , Hormona Liberadora de Gonadotropina/genética , ARN Mensajero , Hormona Folículo Estimulante , Expresión Génica
4.
Anim Genet ; 55(1): 110-122, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38069460

RESUMEN

Selective breeding of meat pigeons is primarily based on growth traits, especially muscle mass (MM). Identification of functional genes and molecular markers of growth and slaughter traits through a genome-wide association study (GWAS) will help to elucidate the underlying molecular mechanisms and provide a theoretical basis for the selective breeding of meat pigeons. The phenotypic data of body weight (BW) and body size (BS) of 556 meat pigeons at 52 and 80 weeks of age were collected. In total, 160 434 high-quality single nucleotide polymorphism sites were obtained by restriction site-associated DNA sequencing. The GWAS analysis revealed that MSTN, IGF2BP3 and NCAPG/LCORL were important candidate genes affecting the growth traits of meat pigeons. IGF2BP3 and NCAPG/LCORL were highly correlated to BW and BS, which are related to overall growth and development, while MSTN was associated with pectoral thickness and BW. Phenotypic association validation with the use of two meat pigeon populations found that the MSTN mutation c.C861T determines the MM. These results provide new insights into the genetic mechanisms underlying phenotypic variations of growth traits and MM in commercial meat pigeons. The identified markers and genes provide a theoretical basis for the selective breeding of meat pigeons.


Asunto(s)
Columbidae , Estudio de Asociación del Genoma Completo , Animales , Estudio de Asociación del Genoma Completo/veterinaria , Columbidae/genética , Fenotipo , Carne/análisis , Peso Corporal/genética , Mutación , Músculos , Polimorfismo de Nucleótido Simple
5.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38066578

RESUMEN

Pigeons and doves (family Columbidae) are one of the most diverse extant avian lineages, and many species have served as key models for evolutionary genomics, developmental biology, physiology, and behavioral studies. Building genomic resources for columbids is essential to further many of these studies. Here, we present high-quality genome assemblies and annotations for 2 columbid species, Columba livia and Columba guinea. We simultaneously assembled C. livia and C. guinea genomes from long-read sequencing of a single F1 hybrid individual. The new C. livia genome assembly (Cliv_3) shows improved completeness and contiguity relative to Cliv_2.1, with an annotation incorporating long-read IsoSeq data for more accurate gene models. Intensive selective breeding of C. livia has given rise to hundreds of breeds with diverse morphological and behavioral characteristics, and Cliv_3 offers improved tools for mapping the genomic architecture of interesting traits. The C. guinea genome assembly is the first for this species and is a new resource for avian comparative genomics. Together, these assemblies and annotations provide improved resources for functional studies of columbids and avian comparative genomics in general.


Asunto(s)
Columbidae , Genoma , Animales , Columbidae/genética , Guinea , Evolución Biológica
6.
Microbes Infect ; 26(3): 105251, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37952689

RESUMEN

The incidence of Chlamydia psittaci respiratory tract infections in humans has increased in Sweden in recent years. This study aimed to identify the transmission route by genotyping C. psittaci from infected humans and birds. 42 human C. psittaci samples and 5 samples from C. psittaci-infected birds were collected. Genotyping was performed using ompA sequencing, Multi-locus sequence typing, and/or SNP-based high-resolution melting-PCR. Epidemiological data was also collected, and a phylogenetic analysis was conducted. Analysis of ompA provided limited resolution, while the SNP-based PCR analysis successfully detected the Mat116 genotype in 3/5 passerine birds and in 26/29 human cases, indicating a high prevalence of this genotype in the human population. These cases were associated with contact with wild birds, mainly through bird feeding during winter or other outdoor exposure. Human cases caused by other genotypes (psittacine and pigeon) were less common and were linked to exposure to caged birds or pigeons. The SNP-genotype Mat116 is rare, but predominated in this study. The use of SNP-based PCR provided a better understanding of the C. psittaci transmission from birds to humans compared to ompA analysis. In Sweden, human psittacosis appears mainly to be transmitted from garden birds during bird feeding in the winter season.


Asunto(s)
Chlamydophila psittaci , Psitacosis , Animales , Humanos , Chlamydophila psittaci/genética , Psitacosis/epidemiología , Psitacosis/veterinaria , Suecia/epidemiología , Tipificación de Secuencias Multilocus , Filogenia , Genotipo , Columbidae/genética
7.
Poult Sci ; 103(1): 103225, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38035860

RESUMEN

Plumage color is an important economic trait for breed feature identification and consumer's requirements in pigeons. The domestic pigeon has multiple types of plumage color, thereby providing a unique opportunity to identify the genetic basis of plumage coloration. White feather color is common for meat and medicinal use. To investigate the genetic variation associated with white plumage color in pigeons, we use genome resequencing and population genomics to identify the genomic regions with strong selective signature between pigeons with brown and white plumage color. Meanwhile, we obtained some candidate genes with melanin or melanosome biosynthesis in selected regions. Finally, we identified a missense mutation p.E256K in the EDNRB2 completely associated with white plumage color. These findings provide a basis for genetic variation in pigeons with plumage color phenotype.


Asunto(s)
Columbidae , Mutación Missense , Animales , Columbidae/genética , Metagenómica , Pigmentación/genética , Pollos/genética , Plumas , Color
8.
Dev Comp Immunol ; 151: 105103, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000488

RESUMEN

Inhibitor of nuclear factor kappa-B kinase ε (IKKε), a member of the non-canonical IκB kinase family, plays a critical role in connecting various signaling pathways associated with the initiation of type I interferon (IFN) production. Although the importance of IKKε in innate immunity has been well established in mammals and fish, its characterization and function in pigeons have remained largely unexplored. In this study, we successfully cloned pigeon IKKε (piIKKε) from pigeon embryo fibroblasts (PEFs) for the first time. This gene encodes 722 amino acids and shares high amino acid similarity with its duck and goose counterparts. piIKKε showed a diffuse cytoplasmic distribution and broad expression in all tissues examined. Overexpression of piIKKε in PEFs significantly activated the IFN-ß promoter, with both the kinase and CC domains of piIKKε playing key roles in initiating IFN-ß expression. Knockdown of piIKKε using small interfering RNA significantly reduced the levels of IFN-ß induced by NDV, AIV, poly (I:C), or SeV. Furthermore, the presence of piIKKε resulted in a remarkable reduction in the replication of both avian influenza virus (AIV) H9N2 and Newcastle disease virus (NDV) in PEFs. Our results demonstrate that piIKKε plays a critical role in mediating antiviral innate immunity in pigeons.


Asunto(s)
Quinasa I-kappa B , Subtipo H9N2 del Virus de la Influenza A , Animales , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Columbidae/genética , Inmunidad Innata , Clonación Molecular , Mamíferos/genética
9.
Poult Sci ; 103(1): 103200, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939591

RESUMEN

miR-19b-3p is reported to undertake various biological role, while its function and action mechanism in chicken hepatic lipid metabolism is unclear. Conservation analysis and tissue expression pattern of miR-19b-3p and its target gene were evaluated, respectively. Dual luciferase reporter system and Western blot technologies were adopted to validate miR-19b-3p target gene. Overexpression and knockdown assays were done to explore the biological functions of miR-19b-3p and target gene in Leghorn Male Hepatoma cell line (LMH). Regulatory approaches of estrogen on miR-19b-3p and target gene expressions are analyzed through site-directed mutation combined with estrogen receptors antagonist treatment assays. The results showed that chicken miR-19b-3p mature sequences are highly conserved among Capra hircus, Columba livia, Rattus norvegicus, Mus musculus, Cricetulus griseus, Danio rerio, Danio novaehollandiae, Orycodylus porosus, Crocodylus porosus, Gadus morhua, and widely expressed in lung, ovary, spleen, duodenum, kidney, heart, liver, leg muscle, and pectoral muscle tissues. miR-19b-3p could significantly increase intracellular triglyceride (TG) content and decrease intracellular cholesterol (TC) content via targeting methylsterol monooxygenase 1 (MSMO1) and elongase of very long chain fatty acids 5 (ELOVL5), which are highly conserved among species, in both mRNA and protein levels. Estrogen could inhibit miR-19b-3p expression, but directly promoted MSMO1 transcription via estrogen receptor α (ERα) and indirectly regulated ELOVL5 expression at the transcription level. Meanwhile, estrogen could also upregulate MSMO1 and ELOVL5 expression through inhibiting miR-19b-3p expression at the post-transcription level. Taken together, these results highlight the role and regulatory mechanism of miR-19b-3p in hepatic lipid metabolism in chicken, and might produce useful comparative information for human obesity studies and biomedical research.


Asunto(s)
Pollos , MicroARNs , Ratones , Femenino , Humanos , Masculino , Animales , Ratas , Pollos/genética , Pollos/metabolismo , Columbidae/genética , MicroARNs/genética , MicroARNs/metabolismo , Estrógenos , Triglicéridos
10.
J Glob Antimicrob Resist ; 36: 70-75, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145799

RESUMEN

OBJECTIVES: Wild birds are vectors of antimicrobial resistance. Birds living in close contact with humans or other animals, like feral pigeons (Columba livia), might be especially prone to acquire resistance genes such as those encoding extended-spectrum beta-lactamases (ESBLs) and carbapenemases. METHODS: Cloacal samples (n = 206) of free-living feral pigeons (C. livia) were collected in Sousse and Monastir, Tunisia. Antimicrobial susceptibility profiles were determined by disc-diffusion, and resistant isolates were short- and long-read whole-genome sequenced. Sequence analysis was performed using tools of the Centre for Genomic Epidemiology, and Phylogenetic analysis was performed based on the core-genome MLST. RESULTS: Fourteen (14/206, 6.8%) pigeons harboured Enterobacterales resistant to last-generations cephalosporins, of which 10 were CTX-M-15- or CTX-M-27-producers, while two (1.0%) carried a VIM-2-producing Pseudomonas putida. Positive pigeons lived on four different livestock farms. Three STs (ST206, ST5584, ST8149) were identified among E. coli, of which ST5584 and ST8149 were found in two different farms. Genetic diversity was also observed in Enterobacter cloacae and P. putida isolates. The blaCTX-M-27 genes were chromosomally encoded, while the blaCTX-M-15 genes were carried on highly similar IncF/F-:A-:B53 plasmids. The blaVIM-2 gene was located on a class 1 integron co-harbouring several resistance genes. CONCLUSION: Pigeons living on livestock farms carried clinically important resistance genes encoding ESBLs and carbapenemases. Our results evidenced that both clonal (ST8149 and ST5584) and plasmidic (IncF/F-:A-:B53) transfers played a role in the spread of resistance genes among pigeons. Further studies are needed to identify factors favouring the transfer and persistence of resistance genes within the pigeon communities.


Asunto(s)
Antiinfecciosos , Pseudomonas putida , Animales , Humanos , Columbidae/genética , Escherichia coli , Pseudomonas putida/genética , Tipificación de Secuencias Multilocus , Túnez/epidemiología , Filogenia , beta-Lactamasas/genética
11.
Zool Res ; 45(1): 69-78, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38114434

RESUMEN

Birds exhibit extraordinary mobility and remarkable navigational skills, obtaining guidance cues from the Earth's magnetic field for orientation and long-distance movement. Bird species also show tremendous diversity in navigation strategies, with considerable differences even within the same taxa and among individuals from the same population. The highly conserved iron and iron-sulfur cluster binding magnetoreceptor (MagR) protein is suggested to enable animals, including birds, to detect the geomagnetic field and navigate accordingly. Notably, MagR is also implicated in other functions, such as electron transfer and biogenesis of iron-sulfur clusters, raising the question of whether variability exists in its biochemical and biophysical features among species, particularly birds. In the current study, we conducted a comparative analysis of MagR from two different bird species, including the migratory European robin and the homing pigeon. Sequence alignment revealed an extremely high degree of similarity between the MagRs of these species, with only three sequence variations. Nevertheless, two of these variations underpinned significant differences in metal binding capacity, oligomeric state, and magnetic properties. These findings offer compelling evidence for the marked differences in MagR between the two avian species, potentially explaining how a highly conserved protein can mediate such diverse functions.


Asunto(s)
Columbidae , Pájaros Cantores , Humanos , Animales , Columbidae/genética , Magnetismo , Hierro , Azufre
12.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37950889

RESUMEN

The domestic pigeon's exceptional phenotypic diversity was key in developing Darwin's Theory of Evolution and establishing the concept of artificial selection. However, unlike its domestic counterpart, its wild progenitor, the rock dove Columba livia has received considerably less attention. Therefore, questions regarding its domestication, evolution, taxonomy, and conservation status remain unresolved. We generated whole-genome sequencing data from 65 historical rock doves that represent all currently recognized subspecies and span the species' original geographic distribution. Our dataset includes 3 specimens from Darwin's collection, and the type specimens of 5 different taxa. We characterized their population structure, genomic diversity, and gene-flow patterns. Our results show the West African subspecies C. l. gymnocyclus is basal to rock doves and domestic pigeons, and suggests gene-flow between the rock dove's sister species C. rupestris, and the ancestor of rock doves after its split from West African populations. These genomes allowed us to propose a model for the evolution of the rock dove in light of the refugia theory. We propose that rock dove genetic diversity and introgression patterns derive from a history of allopatric cycles and dispersion waves during the Quaternary glacial and interglacial periods. To explore the rock dove domestication history, we combined our new dataset with available genomes from domestic pigeons. Our results point to at least 1 domestication event in the Levant that gave rise to all domestic breeds analysed in this study. Finally, we propose a species-level taxonomic arrangement to reflect the evolutionary history of the West African rock dove populations.


Asunto(s)
Columbidae , Genoma , Animales , Columbidae/genética
13.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003649

RESUMEN

Trichomonas gallinae (T. gallinae) has a great influence on the pigeon industry. Pigeons display different resistance abilities to T. gallinae, so the study of the molecular mechanism of resistance is necessary in breeding disease resistant lines. MiRNA plays important roles in the immune response, but there are still no reports of miRNA regulating trichomonosis resistance. We used small RNA sequencing technology to characterize miRNA profiles in different groups. T. gallinae was nasally inoculated in one day old squabs, and according to the infection status, the groups were divided into control (C), susceptible (S) and tolerant (T) groups. We identified 2429 miRNAs in total, including 1162 known miRNAs and 1267 new miRNAs. In a comparison among the C, S and T groups, the target genes of differentially expressed miRNAs were analyzed via GO and KEGG annotation. The results showed that the target genes were enriched in immune-response-related pathways. This indicated that the differentially expressed miRNAs had a critical influence on T. gallinae infection. Novel_miR_741, which could inhibit the expression of PRKCQ, was down-regulated in the T group compared to the C group. It was proven that a decreased novel_miR_741 expression would increase the expression of PRKCQ and increase the immune response. This study brings new insights into understanding the mechanism of trichomonosis resistance.


Asunto(s)
Enfermedades de las Aves , MicroARNs , Tricomoniasis , Trichomonas , Animales , Trichomonas/genética , Columbidae/genética , MicroARNs/genética , Proteína Quinasa C-theta , Enfermedades de las Aves/genética , Tricomoniasis/veterinaria
14.
PLoS Genet ; 19(10): e1010880, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37862332

RESUMEN

Variation in pigment patterns within and among vertebrate species reflects underlying changes in cell migration and function that can impact health, reproductive success, and survival. The domestic pigeon (Columba livia) is an exceptional model for understanding the genetic changes that give rise to diverse pigment patterns, as selective breeding has given rise to hundreds of breeds with extensive variation in plumage color and pattern. Here, we map the genetic architecture of a suite of pigmentation phenotypes known as piebalding. Piebalding is characterized by patches of pigmented and non-pigmented feathers, and these plumage patterns are often breed-specific and stable across generations. Using a combination of quantitative trait locus mapping in F2 laboratory crosses and genome-wide association analysis, we identify a locus associated with piebalding across many pigeon breeds. This shared locus harbors a candidate gene, EDNRB2, that is a known regulator of pigment cell migration, proliferation, and survival. We discover multiple distinct haplotypes at the EDNRB2 locus in piebald pigeons, which include a mix of protein-coding, noncoding, and structural variants that are associated with depigmentation in specific plumage regions. These results identify a role for EDNRB2 in pigment patterning in the domestic pigeon, and highlight how repeated selection at a single locus can generate a diverse array of stable and heritable pigment patterns.


Asunto(s)
Columbidae , Estudio de Asociación del Genoma Completo , Animales , Columbidae/genética , Plumas , Fenotipo , Pigmentación/genética
15.
Poult Sci ; 102(10): 102974, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37573845

RESUMEN

Pigeon paramyxovirus-1 (PPMV-1), a genetic variant of avian paramyxovirus-1 (APMV-1), has been identified in Columbiformes and is the primary cause of diseases in captive and free-ranging pigeons. However, it has also been reported that PPMV-1 can infect chickens naturally and experimentally, thus posing a potential threat to the poultry industry. This study investigated a lethal outbreak of paramyxovirus infection that occurred among 16 oriental turtle doves (Streptopelia orientalis) in a walk-in aviary at a zoo from March to April 2021. Necropsies were performed, and histopathological findings revealed mild to moderate lymphoplasmacytic infiltration in several organs, such as the pancreas, liver, kidneys, and lungs. Reverse transcription polymerase chain reaction (RT-PCR) using formalin-fixed paraffin-embedded tissue blocks, virus isolation from fresh tissue, and in situ hybridization against the fusion (F) protein confirmed the diagnosis for PPMV-1 infection. The isolated strain NTU/C239/21 was fully sequenced by next-generation sequencing, and the results of phylogenetic analyses revealed that the F protein of NTU/C239/21 shared 98.8% nucleotide sequence identity with Pigeon/Taiwan/AHRI121/2017, which was isolated from a feral pigeon in Taiwan. The present study is the first to identify PPMV-1 infection in Streptopelia orientalis and suggests that Streptopelia orientalis may also play an important role in spreading the infection, similar to pigeons in APMV-1 spreading.


Asunto(s)
Columbidae , Enfermedad de Newcastle , Animales , Columbidae/genética , Enfermedad de Newcastle/epidemiología , Filogenia , Pollos/genética , Virus de la Enfermedad de Newcastle , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Genotipo , Hibridación in Situ/veterinaria
16.
Poult Sci ; 102(10): 102954, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37556982

RESUMEN

Pigeons are considered less susceptible, and display few or no clinical signs to infection with avian influenza virus (AIV). Melanoma differentiation-associated gene 5 (MDA5), an important mediator in innate immunity, has been linked to the virus resistance. In this study, the pigeon MDA5 (piMDA5) was cloned. The bioinformatics analysis showed that the C-terminal domain (CTD) of MDA5 is highly conserved among species while the N-terminal caspase recruitment domain (CARD) is variable. Upon infection with Newcastle diseases virus (NDV) and AIV, piMDA5 was upregulated in both pigeons and pigeon embryonic fibroblasts (PEFs). Further study found that overexpression of piMDA5 mediated the activation of interferons (IFNs) and IFN-stimulated genes (ISGs) while inhibiting NDV replication. Conversely, the knockdown of piMDA5 promoted NDV replication. Additionally, CARD was found to be essential for the activation of IFN-ß by piMDA5. Furthermore, pigeon MDA5, chicken MDA5, and human MDA5 differ in inhibiting viral replication and inducing ISGs expression. These findings suggest that MDA5 contributes to suppressing viral replication by activating the IFN signal pathway in pigeons. This study provides valuable insight into the role of MDA5 in pigeons and a better understanding of the conserved role of MDA5 in innate immunity during evolution.


Asunto(s)
Columbidae , Virus de la Influenza A , Animales , Humanos , Columbidae/genética , Pollos/genética , Inmunidad Innata/genética , Virus de la Enfermedad de Newcastle , Replicación Viral , Antivirales
17.
PLoS Genet ; 19(6): e1010746, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37289658

RESUMEN

Pigeons (Columba livia) are among a select few avian species that have developed a specialized reproductive mode wherein the parents produce a 'milk' in their crop to feed newborn squabs. Nonetheless, the transcriptomic dynamics and role in the rapid transition of core crop functions during 'lactation' remain largely unexplored. Here, we generated a de novo pigeon genome assembly to construct a high resolution spatio-temporal transcriptomic landscape of the crop epithelium across the entire breeding stage. This multi-omics analysis identified a set of 'lactation'-related genes involved in lipid and protein metabolism, which contribute to the rapid functional transitions in the crop. Analysis of in situ high-throughput chromatin conformation capture (Hi-C) sequencing revealed extensive reorganization of promoter-enhancer interactions linked to the dynamic expression of these 'lactation'-related genes between stages. Moreover, their expression is spatially localized in specific epithelial layers, and can be correlated with phenotypic changes in the crop. These results illustrate the preferential de novo synthesis of 'milk' lipids and proteins in the crop, and provides candidate enhancer loci for further investigation of the regulatory elements controlling pigeon 'lactation'.


Asunto(s)
Columbidae , Transcriptoma , Animales , Femenino , Transcriptoma/genética , Columbidae/genética , Columbidae/metabolismo , Perfilación de la Expresión Génica , Leche , Lactancia
18.
Anim Biotechnol ; 34(9): 4927-4937, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37199180

RESUMEN

This study was to investigate the correlations of myogenic differentiation 1 (MYOD1) gene polymorphisms with carcass traits and its expression with breast muscle development in pigeons. Four SNPs were found in the pigeon MYOD1 gene. Correlation analysis showed that individuals with AA genotype at both SNPs g.2967A > G (p < .01) and g.3044G > A (p < .05) have significantly higher live weight (LW), carcass weight (CW), semi-eviscerated weight (SEW), eviscerated weight (EW) and breast muscle weight (BMW). Moreover, the two SNPs also had the same significant effects on MYOD1 mRNA expression levels in breast muscle of pigeons, ie, the AA genotype showed higher MYOD1 mRNA expression levels. The diameter and cross-section area of muscle fibers continuously increased from 0w to 4w (p < .05), accompanied with the increasing expression of MYOD1 gene, while the density decreased (p < .05) dramatically from 0w to 1w and continuously fell over in the next few weeks (p > .05). What's more, the expression level of MYOD1 gene was positively correlated with a diameter (r = 0.937, p < .05) and cross-sectional area (r = 0.956, p < .01) of myofiber, and negatively correlated with density (r = -0.769, p < .01). The results showed that individuals with AA genotype at both SNPs g.2967A > G and g.3044G > A have showed higher carcass traits (LW, CW, SEW, EW, and BMW) and higher MYOD1 mRNA expression level in breast muscle than AB and BB genotypes. Moreover, the expression level of MYOD1 gene was closely correlated with muscle characteristic traits, indicating variants of MYOD1 gene was closely related to muscle development and could be a potential candidate gene in marker-assisted selection of pigeons.


Asunto(s)
Columbidae , Carne , Humanos , Animales , Columbidae/genética , Fenotipo , Genotipo , Músculos , ARN Mensajero , Polimorfismo de Nucleótido Simple/genética
19.
Poult Sci ; 102(7): 102673, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37120866

RESUMEN

Paired pigeons only lay 2 eggs in a laying period, which is closely related to ovarian follicle development, but this process is not well understood. In this study, 60 pairs of 12-mo-old White King pigeons were selected and serum and follicles were collected at 4 stages of laying interval (LI), including the first (LI1), the third (LI3), the fifth (LI5), and the seventh day (LI7). Morphological results showed that paired pigeons normally had 2 preovulatory follicles and the second-largest follicle (F2) developed from LI3 and had been selected in LI5. Prehierarchical follicles were coupled and hierarchical, which was in accordance with its clutch size. The P4 concentration increased gradually from LI1 to LI5, reaching a maximum of 30.67 ng/mL in LI5 and decreasing to 27.83 ng/mL in LI7 (P < 0.05). The levels of T in LI1 and LI5 were higher than LI3 and LI7 (P < 0.05), although there was no significant difference in E2 in LI (P > 0.05), but it stayed at high levels. In the TCs of the largest follicle (F1), HSD3B1 mRNA and HSD17B1 mRNA levels peaked in LI7. The expression pattern of CYP17A1 and CYP19A1 was similar, increasing from LI3 to LI5 and then decreasing. In the TCs of F2, the expressions of HSD3B1 and CYP17A1 had no significant difference between LI5 and LI7 (P > 0.05), while the expression pattern of HSD17B1 and CYP19A1 was the opposite. In TCs of SF1, HSD3B1 mRNA level peaked in LI3 while CYP19A1 mRNA levels peaked in LI7. The expression of CYP17A1 had a minor change (P > 0.05) and the expression pattern of HSD17B1 was similar to F1. It was concluded that the morphological characteristics of follicles during the LI for the first time, including the number and diameter of small follicles (SFs) and hierarchical follicles in pigeon and the concentrations of steroid hormones and expressions of steroidogenic genes in TCs of different follicles could explain the growth and selection of 2 preovulatory follicles. This study facilitates further research into the regulation of ovulation and egg production in pigeons.


Asunto(s)
Columbidae , Transcriptoma , Femenino , Animales , Columbidae/genética , Columbidae/metabolismo , Pollos/fisiología , Óvulo/metabolismo , Folículo Ovárico/fisiología , Hormonas/metabolismo , Esteroides/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Complejos Multienzimáticos/metabolismo , Estradiol/metabolismo
20.
Comp Immunol Microbiol Infect Dis ; 94: 101957, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36808017

RESUMEN

Pigeon paramyxovirus type-1 (PPMV-1) is an antigenic-variant of Newcastle disease virus (NDV) which is associated with infection in Columbidae family. In this study, we isolated two pigeon-derived strains pi/Pak/Lhr/SA_1/17 (designed as SA_1) and pi/Pak/Lhr/SA_2/17 (designed as SA_2) from diseased pigeons collected in Punjab province in 2017. We performed the whole genome, phylogenetic analysis and comparative clinico-pathological evaluation of two viruses in pigeons. Phylogenetic analysis based on fusion (F) gene and complete genome sequences showed that SA_1 belonged to sub-genotype XXI.1.1 and SA_2 clustered in sub-genotype XXI.1.2. SA_1 and SA_2 viruses contributed to morbidity and mortality in pigeons. Remarkably, although the two viruses resulted in comparatively similar pattern of pathogenesis and replication ability in various tissues of infected pigeons, SA_2 could cause more severe histopathological lesions and had comparatively high replication ability in pigeons than SA_1. Moreover, pigeons infected with SA_2 had higher shedding efficiency than that of pigeons infected with SA_1. Moreover, several aa substitutions in the major functional domains of the F and HN proteins might be contributed to the pathogenic differences between the two isolates in pigeons. Overall, these findings provide us with important insight into the epidemiology and evolution of PPMV-1 in Pakistan and laid the foundation for the further elucidation of the mechanism underlying the pathogenic difference of PPMV-1 in pigeons.


Asunto(s)
Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Animales , Virus de la Enfermedad de Newcastle/genética , Columbidae/genética , Pakistán , Filogenia , Genotipo , Genoma Viral , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...